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The following problems on determining the stresses around rectilinear longitudi- 
nal shear cracks are examined by the method of singular integral equations: a 
system of arbitrarily arranged cracks in an unbounded or semi-bounded solid, a 
periodic system of cracks of arbitrary orientation in infinite and semi-infinite 

spaces. 
The simply-connected domain is usually considered in the investigations [l- 

91 devoted to a study of the stress distribution around longitudinal shear cracks, 
when the solution of the problem can be obtained by conformal mapping. If the 
domain occupied by the solid is multiconnected, then the existing solutions are 

limited to comparatively simple cases of collinear [ 1 - 31 or parallel [ 2- 5, 8, 

91 cracks. 
The problem of determining the stresses in an infinite solid containing arbit- 

rarily arranged rectilinear longitudinal shear cracks is reduced below to a system 
of integral equations in the general case. This permits the solution of a number 
of new problems of mathematical theory of cracks. The appropriate problems of 
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plane elasticity theory were studied by the same method in [ 10, 111. 
let us note that the integral equations of problems for longitudinal shear cracks 

agree with the integral equations of the appropriate plane problems of heat con- 
duction for a body with heat-insulated cracks. 

1. It is known [ 1, 61 that the solutions of longitudinal shear problems reduce to the 
determination of an analytic function F (z) of the complex variable z = R: + iy in 

the domain occupied by the solid. The stress components rXZ, zyZ and displacement w 

are hence determined in terms of F (z) by means of the formulas (p is the shear modu- 

lus) z x2 - izyz = P(z), W(&Y) L:+(z), F(z)=/‘(z) (1.1) 

If a new coordinate system (xi, yi) is connected with the old (z, ?J) system by the 
relationship 

z I= zi& + z’, z, = X1 $ iy,, Z” = X0 + i7J” 

and the function Fr (zi) plays the same part in the (xi, ~1) system as does the function 
F (z) in the (2, y) system, then we have 

Fi (zi) = eiaF (z,eia + z”) (1.2) 

Here x0, y” are coordinates of the origin in the (xi, yr) system in the old (5, y) sys- 
tem. let there be a slit (crack) in a solid which is in the state of longitudinal shear along 

the strip 1 z 1 < a, y = 0. We examine the case when there are no stresses at infinity 

and the self-equilibrated load. 

$2 +=T -= 
I/i P (5)Y I x I < a (1.3) 

acts on the surfaces of the slit. 
Let 2g (z) / lr denote a discontinuity in the displacements upon going through the 

plane of the slit 
2p-lg (2) = w+ (Z, 0) - w- (2, O), lXl\<~ (1.4) 

Expressing the conditions (1.3) and (1.4) in terms of boundary values of the function 

Fl (z) on the segment 1 J: ) < a, y = 0, we arrive at the conjugate problem 

Pi+ (x) - Pi- (x) = 2g’ (.c>, I x: I < a 

Hence, the piecewise-holomorphic function Fl (z) which decreases at infinity is de- 
termined by a Cauchy-type integral [ 121 

n 

F,(z)=& 1 $@& 

--a 
(1.5) 

Defining the stress rUr in the plane of the slit by means of (1.1) and equating it to 

the given load (1.3). we obtain a singular integral equation in the unknown function 

g’ (4. a 

’ g’(t) tit s - = v(x), t-x IxI< a 

Taking into accouut that-“, (- a) = g (a) = 0, we find [13] 

’ l/as- Pp(t)dt 
g’ (x1 = - fi &2 \ t-x 

--a 
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Hence, we determine the coefficient of stress intensity Ic, for a longitudinal shear 
crack (the upper signs refer to the right vertex of the crack, and the lower sign to the 

left vertex) 
JfXZ 

a - 

k$ =T lim 
X-Vfll [ 

I/a 
- 

g’(z)] = - 1 * 
n Va w 

$ p(t) L-h 
-a 

This formula has been obtained by other means in [S]. 

2. Let there be A’ rectilinear slits of width 2ak (k = 1, 2,..., N) in an infinite 
solid referred to an (z, y, z) coordinate system whose antiplane deformation axis is 
directed along the z-axis. The centers of the slits 0, are determined by the coordinates 

ZkO = zk” + Qik’ = d,e@k. The origins of local (xk, j/k) coordinate system are 
placed at the points Ok. The xk-axes lie in the planes of the slits and make angles uk 

with the z -axis (Fig. 1). There are no stresses at infinity, and the surfaces of the slits 
are loaded by the self-equilibrated forces 

- 
r& = ~QZ = Pk (zk), IZkj\<ak, k=l,%...,N (2.1) 

The state of stress of a solid, caused by discontinuities g, (xk) in the displacements 

on N strips 1 xh I\< ak, yk = 0 (k = 1, 2,..., N), is characterized bv the func- 
tion 3 g I(t)& 

P2 (2) = &- kil emiak \ f _ zk , Zk = e+k (z - ZkO) (2.2) 
-ah- 

which is obtained by superposition of the stress functions (1.5) for single cracks by taking 

0 

N Fig. 1 s 

given load pk(zk), we obtain a system of IV 
singular integral equations for the problem 

account of the conversion formula (1.2) for 

\ 
the passage to a new coordinate system. 

The function F, (z) satisfies all the re- 

quirements of the problem except the bound- 

ary conditions (2.1) on the surfaces of the 
slits. By determining the stresses rUtZ in the 

planes of the slits and equating them to the 

&k (t9 4 g,’ (t) dt = JcPn (4, 15 I< a,, (2.3) 

n=1,2,...,N 

The symbol 2 ’ means that the term with the number of the row is eliminated during 

the summation. The kernels K,k (t, ) x are defined by the relationships 

Let us note that in the case of collinear cracks (yno = 0, a, = 0, n = 1, 2 ,..., 
N) the system (2.3) agrees with the corresponding system of integral equations for 
cracks of a normal tension and transverse shear [lo]. Hence it follows that the solution 
of the problem for any system of collinear transverse or longitudinal shear cracks can be 
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obtained from the solution for cracks of normal tension by a simple change of symbols. 

In the case of two parallel slits (ai = as = 0) of identical width (a, = us = a), 

loaded in such a way that pi (x) = pz (- X) = p (z), the system (2.3) is converted 
into one integral equation 

n 

S[ L+ tfxfdcosf3 
t-x (t + zf d cos p)a + dSsin23 I 

g’(t)dt =np@), Izl<a 
--a 

Here g’ (z)=gi’ (z)= - g,’ (-z), d is the spacing between centers of the slits, 
and fi is the angle between the plane of the slit and a line passing through the middle 

of the slits. 
For a constant load p (x) = T, known integral equations can be obtained from the 

last equation in the case of parallel slits “not shifted” (p = n / 2) [83 or “shifted” by 

the distance 2a (d cos p = 2~) C53. 
We find the solution of the problem for large spacings between the slits. In this case, 

the kernels K, k (t, 5) have the expansions (C,’ are binomial coefficients) 

K,, (t , z) = i i ankpvtYxP-~f&~-l, dnkeiP”k = znG - zko 

p=o v=o 

U nkpv = (- ~)p+v+‘cp” cos [(p - v + 1) an + Yak - (p $ 1) B,,k] 

Following [lo], we obtain the solution of the System of integral equations (2.3) in the 

form of the series o. 

g,’ (5) = 2 g& (5) hP, h = -$ , a = nlax {a,}, d = min {dnk} 
p=o 

ak 

’ 
s 

t yg;r,p-s-l (0 dt , p~:2,3 ( . . . 

+=k 

< _ 5 ’ hk - adnk \<3 

-% 

a~ 4’ fan2 - t2 d4 s ‘kd 

Knowing the functions g,’ (z) by means of (2.2) and (1. l), we can determine the 

state of stress in the whole domain. Let us write the values of the streSS intensity coef- 

ficients at the vertices of any of the cracks 

s p,(t)dt + 
?? 1/c ‘%- 

4 2 &karLk&kof t2**) 

n k=l 
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f&k&knank&kl+ etrk%kSS (‘$a + 2Gdl + o th6) 
Here 

The formulas (2.4) yield the solution of the problem for any N for the arbitrary load 
(1.3). In particular, in the case of two equal cracks (IL’ = 2, a, = a2 = a) whose sur- 
faces are load-free, for a given homogeneous shear ryrm = z at infinity, we have 

kg+ zI/a{coscl,+~ cos a, cos (&, + dk - 2p) 7 

(- 1)” $- ;Os ak 00s (2% + ak - 3p) + 

-&, a, cos2 (cc, + a,--- 2p) + 

-g [2cos (3% + % - 4p) + cos (a, + 3a, - 4p)] cos a, + 0 (h’) 

B = Pal = PI2 + 3% (n=i,k=2 or n=2,k= 1) 

3. We consider the centers of the slits to be on the x-axis. the spacing between the 
centers of adjacent slits to be the constant d (zkO = kd, k = 0, & 1, & 2,... ,) , 
the lengths and angles of slope of the slits to be identical (Uk = a, Czk = a). Under 
the assumption that the same load (pk (4 = p (5)) is applied to all the slits and the 
number of slits tends to infinity, we obtain a periodic system of longitudinal shear cracks 
in an infinite solid. Hence g,’ (z) = g’ (z). After summation we find from (2.2) 

F3 (z) = & 5 ctg G (teia - z) g’ (t) dt 
--a 

By satisfying the boundary condition on the surface of any of the slits we arrive at a 

singular integral equation in the unknown function g’ (X) 
a 

s 
K(t -z)g’(t)dt = q(z), lzj\<a 

---a 

K (z) = $ Re ($a ctg T) 

from which we find integral equations for a periodic system of collinear (a 
parallel (a = 51 I Z) slits 

1 ‘: 
d s 

g’ (t) ctg n (‘; %) dt =P(s), Izlfa (u= 0) 
--a 

(3.1) 

0) or 

(3.2) 
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a 

-& s g’(t) cth x”d- ‘) 02 =P(z), Ixl\<a 
-a 

(a =+) (3.3) 

This last equation has been obtained earlier, in [S], by other means. The solutions of 
(3.2) and (3.3) are easily found in closed form [ 141. 

In particular, we have far the stress intensity coefficient in the case of a periodic sys- 
tem of parallel cracks 

a 
k$ =- 1 R*(t)pt dt (3.4) 

-a 

If concentrated forces Q are applied at a point x = x0 on opposite surfaces of a crack, 

i.e. p (x) = - Q6 (X - x0) (6 (x) is the delta function), then we obtain from (3.4) 

k,* = QR* (x0) (3.5) 

For a constant load on the crack p (x) = - z , we arrive at the known result [ 1 - 31 

(3.6) 

The stress intensity coefficient k, for a periodic system of collinear cracks under ana- 

logous loads can be determined by means of (3.4) - (3.6) if the hyperbolic functions in 

these latter are replaced by the corresponding trigonometric functions. 
Making the change of variable t = g - a, p (E - a) = p. (5) in (3.4). we write the 

(3.7) 

As a -+ CQ , we find the value of the intensity coefficient k, for a periodic system of 
semi-infinite parallel cracks from (3. i) [9]. 

In the general case of crack orientation, the solution of (3.1) can be obtained as a 

power series in h for large spacings between the cracks. We obtain for the intensity cc- 
efficient (the quantities G, are defined by (2.5)) 

bl = - “2 cm 2a, 
12 

In the case of the constant load p (I) = - t on the cracks. we find 

$= := z f/e 1 + ‘$ cos 22 $- fi& (28 co@ 2u - 9)] +- 0 (h”) 

4. Let us examine a system of N longitudinal shear cracks in an elastic half-space 
whose surface is load-free. The stress function F4 (z) for such a problem can be obtained 
from (2.2) by assuming that there are I\r slits in the upper and lower half-spaces,where 
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the (r, z) -plane is the plane of geometric and force symmetry 

F4 (‘) = & & i gk’ @) ( tpk _‘, + Zko 
- te_iak ‘, +zko ) dt t4.1) 

+=k 

Equating the stresses on the surfaces of the cracks to a given load (1.3). we obtain a 

system of integral equations to determine the unknown functions g,’ (t) 

an * s Rnk (t , 5) g,’ (t) dt = np,(s), I 2 I\< a, n = I,‘4 . ..J’ (4.2) 

-%I k=l -ak 

Rnk (t, 2) = (1 - &k) &k (t, 2) + Re 

Here 6,,, is the Kronecker symbol. The second members in the kernels of (4.2) de- 

termine the influence of the free surface of the half-space. 

We assume that the centers of all the slits are arranged on one straight line y = - h 
parallel to the half-space boundary, and the spacing between the centers of adjacent 

slits is a constant d (2 k” = kd - ih, k = 0, 51, +2, . . .), the lengths and angles ofslope 
of the slits are identical (al, = a, ah. = a). Considering the same load (Pk (5) - p (z)) 

to be applied to all the slits and their number to tend to infinity, we obtain the stress 
function F, (2) for a periodic system of slits in a half-space with a free surface from 

(4.1) n 

Fs (z) = m& ’ 
\I 

ctg $ (fP - 2, - ih) - ctg + (teMia - 2 -t ih) 

--a I 
g’ (t) dt 

We find the integral equation of the problem under consideration by satisfying the 
boundary condition on the surface of any of the slits 

D 
’ 

s 
g’ (t) R (t, z) dt = np (I), IXj<U (4.3) 

--a 

R (t, x) = K (t _ x) + $ Re eia ctg .+ (Xeia - te-+ - 2ih) 1 
Let us note that the solution of (4.2) and (4.3) in the case of large spacings between 

the cracks and the half-space boundaries can be found by the same means as the solu- 
tion of the system (2.3) has been found. 
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The problem of optimal control of quasilinear systems in the presence of exter- 
nal random while noise-type perturbations is considered, Consecutive approxi- 
mations to the optimal control are obtained and the errors along the trajectory 
and the optimal functional are estimated. 

1. A number of papers in the field of optimal control of stochastic systems which 
have recently appeared deal with the study of controlled systems containing small terms, 
This can be explained, in particular, by the fact that although the basic f~mulations of 
the problems of stochastic control have been known for considerable time [ 1, 23, how- 

ever conclusive results could only be obtained for the linear systems and a quadratic 
functional. A problem arises of constructing an approximate optimal control by expan- 
sion in the terms of a small parameter. For the case when the external perturbationsare 
of low intensity. i. e. when a specified controlled system plays the part of the generating 
system, the problem of synthesizing an approximate control is dealt with in p- 51 where 
it is assumed that the solution of the problem is known, and has been obtained in the form 
of a synthesis. 

Another approach to the problem of approximate synthesis of an optimal control is also 


